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SUMMARY 

Techniques to reduce the computer time required to solve neutron transport problems 
that use the discrete -ordinates (Sn) approximation were studied. These techniques are 
based on obtaining preliminary neutron f lux  distributions with low-order angular or spa- 
tial quadrature and then incorporating the high-order detail required for the final calcula- 
tion. Results indicate that such modifications to the standard application of the Sn 
method can significantly decrease problem execution times. 

of the standard Sn method application was required, several conclusions may be drawn: 
(1) If more than one angular quadrature set  is employed, requiring ful l  convergence on the 
preliminary set  increases running time. (2) For problems specifying lower order final 
angular quadratures (IS ), the most efficient approach to final convergence is through 
the use of a single preliminary Sa quadrature followed by partial convergence on the 
final quatrature. The partial convergence limits the number of inner iterations and as- 
sures that the fluxes are equally well converged in each group before entering the final 
calculation. (3) For problems requiring high-order final angular quadratures (>S8), the 
greatest time reduction is observed when several intermediate quadrature sets are used 
successively to approach final convergence. (4) For problems requiring highly detailed 
spatial information, the time to final convergence is reduced when a relatively coarse 
mesh is used to represent the spatial and material configuration in the preliminary cal- 
culation. 

From those sample problems in which converged solution accuracy identical to that 
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I NTROD UCTl ON 

Recent advances in computer design make it possible to obtain numerical solutions 
to problems previously too large to process. However, the direct application of exist- 
ing methods to these larger problems can require prohibitively large expenditures of 
computer time. One class of problem of which this is particularly true, due to the 



iterative procedure involved, is the numerical solution of the Boltzmann transport equa - 
tion using the Sn, or discrete ordinates method (ref. 1). 

The solution of the stationary transport equation 

entails the determination of a particle flux distribution which is a function of energy E, 
position F, and direction 6 in terms of the total cross  section ut and the source S. 
In the Sn method, this is accomplished by establishing a quadrature on the domain of 
each of these independent variables and, using an initial approximate distribution, iterat- 
ing on each quadrature until a specified degree of convergence is attained. Several tech- 
niques for improving the efficiency of the method by using various scaling (ref. 2) and 
acceleration (ref. 3) procedures to force more rapid convergence on the flux distribution 
have been successfully applied. Alternate techniques for  directly reducing the number of 
numerical calculations involved by varying the manner in which the quadratures are 
applied seem to have been less thoroughly investigated. Thus, existing applications of 
the Sn method are basically similar (ref. 4) in that they require a constant order of 
quadrature for each of the independent variables. 

In obtaining a solution to the transport equation for a problem in which no prior in- 
formation concerning the flux distribution is available, it is customary to use as a f i rs t  
approximation a distribution which is constant in the independent variables. The major 
portion of the numerical calculation is then devoted to obtaining successively more 
accurate approximations to the flux distribution. Since the time required to perform an 
iteration depends strongly on quadrature order and since the accuracy of the early itera- 
tions is low, use of the high quadrature orders required for the final solution does not 
appear warranted in the preliminary stages of the calculation. A more optimum proce- 
dure might be to vary the quadratures as a function of the progress of the calculation so 
as to obtain a reasonably accurate preliminary flux distribution more rapidly. 

energy quadrature is effectively removed from the actual discrete ordinates calculation 
due to the group averaging methods normally used. The two remaining independent 
variables, direction and position, will be discussed separately. 

The central feature of the Sn technique is the representation of the continuous 
angular distribution of the particle flux by a number of discrete intervals. If the direc- 
tion unit vector 6 is defined by the angles p, q, and t ,  it may be written, in rectangular 
coordinates, as 

Although the flux distribution is a function of energy, position, and direction, the 

A 

Am = cos pi + cos qi + cos t i  (2) 
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where m denotes the total angular dependence. The direction 6, represents a point 
on the surface on a unit sphere and has an associated surface area wm, which indicates 
the weight assigned to  that direction. The range of integration over the unit vector is 
divided into a number of intervals M corresponding to the order of the quadrature, and 
the angular flux is assumed to be constant within each interval. The integral over the 
angle may now be replaced with a summation over the weighted intervals so that the group 
scalar flux cp is given by 

g 

where +g; 
Since 'de calculation time increases rapidly with the number of discrete intervals 

employed, limiting this number of directions in the initial stages of the calculation should 
be a valid procedure. Historically, several variations in the standard Sn procedure have 
attempted to achieve this end by first obtaining a preliminary flux distribution for use in 
the main calculation. Thus, some Sn codes have contained an option for  first perform- 
ing a diffusion theory solution (ref. 5) for first performing one outer iteration using an 
S2 quadrature (ref. 6) or for reducing the number of inner iterations in the initial outer 
iterations (ref. 7). There seems to be little or  no published information on the effect of 
these procedures on accuracy and running time. 

In the standard Sn treatment, the spatial dependence of the particle flux is approxi- 
mated by superimposing a finite mesh on the configuration to be analyzed. While the 
mesh spacing in any one direction is arbitrary, no variation is permitted in that mesh in 
an orthogonal direction. For example, in rectangular coordinates, the mesh set  up along 
the x-coordinate must be retained for all values of the y-coordinate. 

angular fluxes J /  involves the use of a physical model to relate the angular fluxes at the 
mesh cell boundaries with the central flux. In the commonly used "diamond" model 

represents the average flux in an interval for  a given direction. 

In the discrete ordinates method, determination of the value of the central average 

- - -  + : - - = -  k g ,  i+l, k, m + *g, i, k, G] 
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where i and k represent mesh boundaries in orthogonal directions and m again de- 
notes the angular dependence. Since all these angular fluxes must be calculated repeat- 
edly in each interval, for  each quadrature direction, as indicated in equation (3), it is 
obvious that any method of eliminating unnecessary spatial mesh intervals would also re- 
duce calculation time. 

The objective of this study was to determine the general feasibility of reducing com- 
puter time in discrete ordinates calculations, In particular, several modifications to 
the standard Sn procedure, which relax the constant quadrature requirements, were 
investigated and their effect on accuracy and calculation time observed. 

ANALYSIS AND RESULTS 

For  this study, the modifications made to present applications of the discrete ordi- 
nates method are restricted to relaxation of the constant quadrature requirements. The 
primary objective in allowing quadratures to vary during the calculation is to establish 
improved scalar f lux  distributions more rapidly. This is accomplished by performing 
preliminary calculations with lower order quadratures, and a concomitant smaller num - 
ber of angular fluxes, and using the resulting scalar fluxes to enter the final calculation. 

Removal of the energy dependence from equation (1) results in a set of integrodiffer- 
entia1 equations coupled by a source term involving only the scalar fluxes. In the normal 
flow of the discrete ordinates calculation there are two major iterative procedures. The 
first, or inner iteration, consists of a determination of the angular fluxes for all dis- 
crete directions over the entire spatial mesh. This results, as indicated in equation (3), 
in a revised scalar flux distribution. The second, or  outer iteration, involves calcula- 
tion of the source terms coupling each equation and involves only these scalar fluxes. 
Since this outer iteration is essentially independent of the angular fluxes, the completion 
of each such iteration affords a convenient point at which to vary angular quadratures. 

modifications to the angular and spatial quadratures are not analogous. Permissible 
variations in the spatial mesh should comprise not only alterations in the order of the 
uniform mesh but, more importantly, the elimination o r  combination of noncritical mesh 
intervals. This latter consideration requires that some assumptions be made regarding 
the behavior of the individual angular fluxes. 

Because of the dissimilar procedures involved, the modifications to the angular and 
spatial quadratures will be treated separately. All modifications were made utilizing an 
existing two-dimensional Sn program (ref. 3) TDSN. TDSN is a variable storage allo- 
cation code which is similar in flow diagram to other current discrete ordinates codes. 

While it is also possible to vary the spatial mesh on termination of an outer iteration, 
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The configuration used for testing these modifications is shown in figure 1. It is a 
rectangular coordinate representation of the transverse section of a cylindrical reactor. 
The reactor is fueled with uranium nitride enriched in the uranium-233 isotope (U233N) 
and uses lithium-7 (Li ) as a coolant. Control is effected by the rotation of noncentral 
drums containing boron carbide (B4C) and the reflector is beryllium oxide (BeO). 

(ref. 8) and GATHER-II (ref. 9) library are used. While this configuration was run to 
verify the accuracy of all the modifications, the angular quadrature results are based 
primarily on a one -dimensional representation of this core using two-dimensional quadra- 
ture sets. 
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Eight group cross sections, seven fast and one thermal, generated from the GAM-I1 

ANGULAR QUADRATURE MODI FlCATl ON S 

Analysis 

Examination of the flux values established during the early iterations of a high-order 
angular quadrature calculation indicates that a large number of unnecessary numerical 
steps are performed in establishing an accurate preliminary scalar flux distribution. 
The use of any of the previously described methods (refs. 5 to 7) should be a valid, but 
perhaps inefficient, procedure for  establishing preliminary scalar flux distribution. The 
basic question of the optimum manner in which to approach the final solution requires a 
more general modification of the standard Sn coding. Options should be included which 
would allow studies to be made of the effect on convergence of using any progression of 
quadratures in conjunction with arbitrary termination criteria. In addition, since most 
reactor configurations involve energy dependent cross sections in which the optimum 
quadrature order would not be identical for all energy groups, it would be of interest to 
observe the effect of permitting the quadrature order to be a function of the energy. 

Since the lower order quadratures cannot be expected to yield scalar flux distribu- 
tions with an accuracy equivalent to that of higher order quadratures, there is a little 
point in solving the lower order calculation to the same degree of convergence required 
for the final calculation. The major benefit in the final calculation should be derived from 
the use of a trial  scalar flux which minimizes the number of inner iterations required for 
convergence on the f ina l  quadrature and not from fully converged low-order scalar fluxes. 
An important question in this regard is that of determining the optimum point at which to 
effect the quadrature variations. 

puter program previously referenced (ref. 3) has been altered to perform the following 
sequences of operation: 

In order to study the effect on solution time of the modifications discussed, the com- 
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(1) Any number of preliminary lower order quadrature sets may be used. 
(2) The use of a given quadrature set may be terminated either by completion of a 

given number of outer iterations or by attaining to some specified degree of convergence. 
(3) When the number of outer iterations is specified, a convergence criterion may be 

used which will terminate the calculation if convergence on that set is attained before all 
the outers are performed. 

(4) The final quadrature order may be made a function of the energy group. This 
feature may be used with or without the preliminary lower order calculation. 

Sequences (2) and(3) imply that more than one degree of convergence may be used on 
the same quadrature set. This, in effect, serves to limit the number of inner iterations in 
the initial phases of the calculation. The multiple sets of direction numbers need not be 
read in as the program generates moment modified sets (ref. 10) as required. In addition, 
all the options available in the original code, including convergence tests and acceleration 
procedures, a r e  retained. None of the modifications made which involve varying the 
angular quadrature order during the course of the calculation should affect the accuracy 
of the final results. Convergence on the final values of the angular fluxes, eigenvalues, 
and other quantities must not depend on the manner in which the calculation is begun. 
This is also true, within the framework of the quadrature orders used, for the modifica- 
tion in which quadrature is made a function of the energy. The main problem here is in 
not having a foreknowledge of the quadrature required to represent a given energy group 
accurately. 

RESULTS 

The most important consideration concerning the use of preliminary low -order quad- 
ratures is that of determining the optimum manner in which to approach final convergence. 
Results from the one-dimensional cases collected in table I indicate that this optimum 
method depends on the order of the final quadrature desired. 

The terminology in table I is best explained by example. In case la, the quadrature 
sequence S2, s8 and the criterion sequence 21, mean that the problem was started 
as S2 and after two outer iterations 21, it was switched to an  S8 calculation and com- 
pleted with a convergence criterion of 
sequence and in the criterion sequence are the same as for the base case. 

on both the particular computer and Sn program used, the test case results allow some 
general conclusions to be drawn. 

Note that the last value in the quadrature 

Although the running times for the problems of table I a r e  dependent, to some extent, 

The strategy used to effect maximum time reduction depends on the order of the final 
quadrature desired. For the test case, with an S8 final quadrature, the optimum ap- 
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TABLE I. - QUADRATURE MODIFICATIONS 

Case 1 

a 
Base 

b 
C 

d 
e 
f 
g 
h 

Quadrature sequence Criterion sequencea Running 
time, 
min 

2.53 

'2' '8 31, 1. 84 
'2, '8 1 .63  

'2' '8 

'2' '8 21, 1 .90  
'8 

'2' '8 10-3' 10-4 1 .77  
10-4: 10-4 2 .0  
21, 1 .52 

'89 '8 21, 1.36 
'49 '8 21, 1 .70  

'22 '89 '8 

Case 2 

aThe number of outer iterations I run on the indicated 
quadrature set is represented by nI. 

Quadrature sequence Criterion sequence" Running 
time, 
min 

proach was to use only a single preliminary quadrature. This is best illustrated by com- 
paring case lg, which used only an S2 start, with case lh, which used both an S2 and 
an S 
For the same test case with an S16 final quadrature, best results were obtained with the 
use of multiple preliminary quadratures. As an example, case 2a, which employed three 
preliminary quadrature orders, converged much more rapidly than case 2b, which used 
only the S2 preliminary calculation. In general, it appears that calculations involving 
low-order final quadratures are best accomplished with a single intermediate quadrature 
while high -order calculations require the use of multiple preliminary quadrature sets. 

For those problems in which the use of only a single preliminary quadrature is most 
efficient, a number of trial cases (la to lg) where run in order to determine when to shift 
from the preliminary to the final quadrature. As discussed previously, ful l  convergence 
on the preliminary quadrature is probably not desirable. This is borne out by case le  

preliminary calculation, and whose running time to final convergence was longer. 4 
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which converged the S2 start to the f ina l  criterion and required more running time 
than any of the other methods applied. These cases also indicate that final convergence is 
best approached by first performing several outer iterations and then converging to some 
intermediate criterion on the final quadrature. The use of this intermediate criterion 
essentially acts to limit the number of inner iterations per outer iteration during that 
portion of the calculation when the flux distribution is changing rapidly. The same effect 
could be achieved by directly controlling the number of inner iterations per outer itera- 
tion but this procedure affords no way of ensuring that the flux in each energy group is 
equally well converged. 

For those problems in which multiple quadratures are used to approach final conver- 
gence, it is more difficult to specify an optimum approach. The calculation of all of the 
large number of permutations afforded by allowing both a given number of outer iterations 
and an intermediate convergence for each quadrature criterion would require an inordinate 
amount of machine time. Again, however, case 2c demonstrates that running to ful l  con- 
vergence on each preliminary quadrature is less efficient than use of other available op- 
tions. Consideration of the results of the cases run shows that the shortest running time 
for the S16 solution was achieved by performing a limited number of outer iterations on 
both an S2 and an S4 preliminary calculation followed by intermediate convergence on 
an S 
which followed this pattern, reduced the time required to obtain an SI6 result by more 
than 50 percent. 

group was also tested on the same base case but with the quadrature sets  for the eight 
energy groups arbitrarily chosen as 2S8, 4S4, and 2S2 starting with the highest energy 
group. For this test case the running time was reduced by about 60 percent. The low- 
order quadrature s tar t  may also be used in conjunction with this modification to reduce the 
running time further. The value of this modification is questionable due to the difficulty 
involved in specifying appropriate quadrature orders. 

quadrature and, finally, by final convergence on the s16 solution. Case 2a, 8 

The program modification which allows the quadrature order to be specified by energy 

SPATIAL QUADRATURE MODIFICATIONS 

An a I ys is 

Present applications of the discrete ordinates method require that a continuous spa- 
tial mesh be employed. This means that the interval spacing used in one direction must 
be retained over the whole configuration. For example, the use of rectangular coordi- 
nates to represent the cylindrical boundary shown in figure 1 requires retention of the 
extraneous intervals lying outside the configuration. The typical reactor problem also 
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contains larger homogeneous regions which should not require the same detailed spatial 
treatment as is necessary near material interfaces or boundaries. Since the angular flux 
in each discrete direction must be repetitively computed for each mesh interval, reduction 
or elimination of unnecessary intervals would improve the efficiency of the calculation. 
Another desirable option would be to obtain an initial improved flux estimate by first 
solving a less detailed problem. 

Although consideration of the constant spatial quadrature requirement indicates many 
possible modifications, those accomplished for  this study were restricted to the following: 

(1) An option for specifying the number of mesh intervals in the configuration in one 
direction as a function of the other direction is added. In effect, this allows the normal 
mesh spacing to be retained but permits the truncation of individual rows in the configura- 
tion, as shown in figure 2. The boundary conditions are then applied to the initial and 
final remaining intervals in each row. 

(2) An option for varying the mesh interval spacing in the interior regions for both 
directions is developed. In effect, this allows several  intervals to be combined into one 
and permits the angular fluxes to be calculated only once, in each inner iteration, for 
this larger interval rather than once for each original separate interval. This option is 
depicted in figure 3. 

vision is made for expanding the scalar flux distribution developed in part (2) and perform- 
ing final iterations on the original mesh configuration. 

standard S 
unique since the same end effect, the reduction of the number of intervals to be treated 
in the calculation, may be achieved using many different approaches. In general, the 
modifications described here have been restricted to Cartesian coordinates and an attempt 
made to keep the additional input as simple as possible. 

(3) If solution accuracy equivalent to that of the original Sn mesh is required, a pro- 

Because of the numerous ways in which alterations to the spatial mesh portion of the 
flow may be accomplished, no spatial modification may be regarded as n 

Results 

The first modification tested was that in which the number of intervals in each row is 
allowed to vary. This option is primarily useful where it is necessary to use rectangular 
coordinates to analyze a cylindrical core such as shown in figure 2. Any combination of 
the normal boundary conditions is permitted so that the quarter, half, or ful l  configuration 
may be run. In the standard Sn treatment, it is necessary to run the complete rectan- 
gular mesh with some artificial material in the extraneous intervals. It is possible to 
compare the accuracy of this modification with that of the standard treatment by insert- 
ing a "perfect absorber" into these intervals. Comparison of the eigenvalues from such 
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Figure 2. - Interval truncation modification. 
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calculations shows agreement, at the end of each outer iteration, to better than the ac- 
curacy required by the convergence criterion used. The time reduction depends, of 
course, on the complexity of the original case and on the number of intervals deleted. 
For the configuration of figure 2, with the exterior intervals removed from the computa- 
tion, the time reduction is approximately 25 percent. 

As a test of the leakage calculation, a simple case was run using cylindrical coordi- 
nates in the original code to obtain the eigenvalue and leakage for a 10-centimeter-radius 
cylinder with no internal details. This run was then compared with the interval deletion 
modification results using a 10-interval approximation of the cylindrical boundary. The 
comparison yields 

Method 

Original TDSN 
Interval deletion 

Eigenvalue Leakage per 
source 
neutron 

0.9623 0.0377 
.9617 .0383 

which is quite accurate since only 10 steps were used to approximate the boundary. 

gions of the core are combined, is the most complex in terms of alterations made to the 
standard flow. Since the method of implementing any such scheme is quite arbitrary, a 
brief description of the procedure followed is given. 

The normal spatial mesh is first defined. Two interior coordinate boundaries a re  
then specified. Within these boundaries, the interval reduction, or  combination, may be 
applied. Each original region is comprised of a given number of intervals, bounded by 
mesh lines. The interval reduction is accomplished by choosing the number of mesh 
lines, in each direction, to be eliminated. Thus, sets of from one to the total number of 
interval lines may be removed. As an example, if se ts  of two are removed, two interval 
boundaries are deleted, the next is retained, the next two removed, and the process con- 
tinued until the outer region boundary is reached. The elimination is performed indepen- 
dently in each coordinate direction with the only restriction being that the last remaining 
interval boundaries must coincide with the original region boundaries. Figure 3 indicates 
the results of applying this process to the test case. Since the process results in dis- 
similarly sized adjacent intervals, some assumption is necessary concerning the behavior 
of the angular fluxes across such boundaries. No attempt has been made in this study to 
develop interpolation formulas for such cases and simple flux averages have been used to 
extrapolate the angular fluxes. 

The second modification, in which interior mesh intervals within homogeneous re - 
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As an example of the use of this modification, the configuration shown in figure 3 was 
run with the intervals combined as indicated. This problem should represent an extreme 
test of the modification since some intervals have been combined in regions, such as 
near the control drums and material interfaces, where the angular fluxes are expected 
to vary rapidly. Two test cases were run and compared with the results of the original 
version of the program in order to compare both eigenvalues and reactivities. The second 
case is also as in figure 3 but with the control drums rotated 90' clockwise. Results for 
the first case are 

Method Time, 
min 

Original TDSN 22.88 
Interval reduction 15.44 

Eigenvalue 

1.256 
1.252 

The eigenvalues differ by 0.39 percent. The running time is reducec 
For the 90' control drum rotation, the results are 

Method Time, 
min 

Original TDSN 17.22 
Interval reduction 11.96 

Eigenvalue 

1.285 
1.280 

by about 35 percent. 

The eigenvalues differ by 0.32 percent with a time reduction of about 33 percent. A com- 
parison of the control reactivities shows that the original version yields 2.28 percent 
6k/E and the interval reduction scheme 2.21 percent 6 k b .  This is good agreement in 
view of the,fact that intervals have been deleted in regions where the flux does not con- 
form to an assumption of relative constancy. 

flux guess for use in a final calculation over the original spatial mesh. To demonstrate 
this, a configuration similar to that shown in figure 3 was run, using a coarse spatial 
mesh with less detail in the control drum region, for three outer iterations of the reduced 
mesh. The scalar fluxes resulting from this calculation were then expanded to fit the 
original mesh, and the final iterations converged on this mesh. A comparison of the 
times involved yields 
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Method 

Original TDSN 

for a time reduction of approximately 40 percent. 

Time, Eigenvalue 
min 

13.32 1.145 

4.192 1.135 
+3.830 1.145 1 

C ONC LU S I ON S 

Some general conclusions regarding the utility of modifications of the type accom- 
plished for this study may be drawn as a result of the test cases run. These conclusions 
depend, to some extent, on the accuracy required for the final calculation. 

For repetitive survey calculations, in which high accuracy is not required, the use of 
approximate solutions can greatly reduce machine running times. For the same computer 
time, the results a r e  more accurate than obtained with a straight Sn calculation. For 
the modification using a less detailed angular representation in the preliminary calcula- 
tions, an approximate solution may be obtained by permitting the quadrature order to be 
a function of the energy group. While the question of the quadrature order required to 
describe a given energy group adequately may be difficult, test case results have not 
varied greatly with reductions in quadrature order. Moreover, the energy dependent 
quadrature solutions, particularly when combined with a low -order preliminary calcula- 
tion, afford a means of rapidly obtaining approximate answers. For the modification in 
which interval boundaries are omitted, an approximate solution is obtained by combining 
less important mesh intervals. The question of which intervals to combine is much less 
difficult than that of predetermining angular quadrature orders. Since the configuration 
to be analyzed is known and the spatial angular flux averages postulate a slowly varying 
angular flux, intervals should be combined only in regions which are homogeneous and 
removed from material interfaces. The test case results, in which the interval reduc- 
tion scheme was applied to regions which do not rigorously satisfy the postulate, indicate 
that this limitation is not severe. 

of the standard Sn method application was required, several conclusions may be drawn: 

on the preliminary sets significantly increases running time. 

From those sample problems in which converged solution accuracy identical to that 

1. If more than one angular quadrature set  is employed, requiring full convergence 
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2. For  problems specifying lower order final angular quadratures (5S8), the most 
efficient approach to final convergence is through the use of a single preliminary S2 
quadrature followed by partial convergence on the final quadrature. The partial conver- 
gence limits the number of inner iterations and assures that the fluxes are equally well 
converged in each group before entering the final calculation. 

3. For  problems requiring high-order f inal  angular quadratures (>s8) the greatest 
time reduction is observed when several intermediate quadrature sets are used succes - 
sively to approach final convergence. 

vergence is reduced when a relatively coarse mesh is used to represent the spatial and 
material configuration in the preliminary calculation. 

reducing machine execution times without impairing solution accuracy. 

4. For problems requiring highly detailed spatial information, the time to final con- 

It may be concluded that modifications of the type outlined a r e  capable of significantly 
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those obtained with the standard method. 
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